Last Update: 6-Apr-2007

General Notes:

- Lines count from the top of the page and include headings and equations but not figures, tables, or captions.
- Brackets [] enclose clarifications and not text replacements.
- Equations, tables, and figures are referenced by numbered description.

Page	Reference	Is	Is Clearer As
xxx	subscripts	[some entries not alphabetized]	[alphabetize]
8	Line 23	of the system as	of the system (F) as
18	Lines 6,7	However	[Move under lines 10,11]
52	Line 4	$\dots \mathbf{X}^{T} \mathbf{X}$ matrix.	$\dots \mathbf{X}^{T} \mathbf{X}$ matrix elements.
53	Line 1	\dots suppose that $\Lambda = \mathbf{U}^{\mathrm{T}}\mathbf{U}$.	suppose that $\mathbf{\Lambda} = \mathbf{U}^{\mathrm{T}}\mathbf{U}$ and is diagonal.
61	Eqn 1.60	if $x > 0$ for all x [redundant]	if $x > 0$
01	Eqn 1.61	if $x > 0$ for all x [redundant]	if $x > 0$
63	Last Eqn	Eqn has broken lines	Conform to standard
65	Line 25	to minimize the sum	to minimize the area sum
66	Fig 1.13	ε	e
67	Last Eqn	Superscript ² is too high	Conform to standard
72	Line 21	This property is known as	$\mathbf{H} = \mathbf{H}^n$ is known as
74	Eqn 1.87	Superscript ² is too high	Conform to standard
	T : 00	Y(x)	Y(x)
78	Line 22	$\overline{Y'(x_{max})}$	$\overline{Y(x_{max})}$
		These phrases are peculiar to this	
84	Line 21	text	[omit – this sentence is redundant]
103	Line 6	A fuel manifold	A fuel manifold (not shown)
100		Fuel A. B. C., [rename Fuel 1, 2,	Fuel labels are not meant to correspond to page 104
105	Fig 2.2	3]	descriptions
110	Line 14	Side-fired sideway)	Side-fired sideways)
111	Fig 1.11	Table 2.1	[Some slots are deliberately blank]
121	Fig 2.15	[Center riser is unlabeled]	[Center riser should be labeled "PSA Gas"]
124	Line 7	The helical coil of the two.	[Move to end of paragraph]
141	Line 9	(e.g., municipal solid waste (MSW), waste gases	(e.g., waste gases
204	Line 11	\dots DF (degrees of freedom), F (F	DF (degrees of freedom), MS (mean square), F (F
204	Line 11	ratio)	ratio)
189			See "Extras" for Chapter 2 Addendum
206	Line 20	Should we accept the null	Should we fail to reject the null hypothesis then?
200	Lille 20	hypothesis then?	should we fail to reject the null hypothesis then:
	Line 9	, we calculate the mean sum of	we calculate the mean sum of squares as $MSM =$
207		squares by the degrees Thus	SSM/DFM and
		MSM = SSM/DFM and	
209	Last line	[incorrect hat] $\hat{\xi}_k$	[correct hat] $\hat{\xi}_k$
262	Table 3.21	[Std Beta entries shown]	[Std Beta entries should not be shown as they are not
			introduced until p 343]
263	Table 3.22	[Std Beta entries shown]	[Std Beta entries should not be shown as they are not
203	1 4010 5.22		introduced until p 343]

Last Update: 6-Apr-2007

Page	Reference	Is	Is Clearer As
267	Line 5	using a blend of hydrogen and	using either hydrogen and natural gas at two fuel
207		natural gas at various fuel flow	flow
268	Line 13	ANOVA shows that there is	ANOVA shows that the block entry comprises
200	T' 1	significant bias.	significant variance.
280	Line I	where	Again, we have
283	Line 14	order	construct the design in order of its mixed levels
267	Line 5	using a blend of hydrogen and natural gas at various fuel flow	using either hydrogen and natural gas at two fuel flow
268	Line 13	ANOVA shows that there is significant bias.	ANOVA shows that the block entry comprises significant variance.
280	Line 1	Where	Again, we have
283	Line 14	construct the design in binary order	construct the design in order of its mixed levels
285	Line 17	Then two factors code for four levels, $-0, 1,$	Then two factors code for four levels: 0, 1,
293	Line 16	the distributed control systems (DCSs)	the distributed control system (DCS)
325	Equations	[All models begin with y]	[All models should begin with \hat{y}]
343	Line 25	if the concentration rises, then	if the concentration rises and begins to lower the BWT, then
345	Line 2	Likewise, the $\mathbf{X}^{T}\mathbf{y}$ matrix is the correlation matrix	Likewise, the $\mathbf{X}^{T}\mathbf{y}$ vector is the correlation vector
349	Line 3	variance and cause	variance and to cause
357	Table 4.15	$[L_{\rm f} \text{ and } D_{\rm f}]$	[subscript should be italicized as L_f and D_f]
359	Table 4.16	170	$2 \cdot 1 + 4 \cdot 2 + 8 \cdot 4 + 16 \cdot 8 = 170$
360	Table 4.18	47	9.1 + 5.2 + 3.4 + 2.8 = 47
366	Table 4.23	[Title:] Split-Plot Design	Incorrect Analysis of a Tacit Split-Plot Design
368	Table 4.24	[Heading] DF	[Omit DF]
375	Line 2	four terms having	four terms having degrees of freedom
376	Table 4.31	[Table lacks stripes]	[Table should be striped for clarity]
382	Lines 5, 6	[for consistency, delimit with commas, not slashes]	1:2, 2, 12:2 , 3, 13:2, 23, 123:2 , <i>r</i> :123
387	Line 7	where $a_0 = b_3$	This is Equation 4.80 with $a_0 = b_3$
389	Figure 4.14	For example y_{12} is the binary blend	For example y_{12} is the response for the binary blend
392	Line 17	to the number of factors (<i>n</i>) in the simplex.	to the number of components (c) in the simplex.
	Eqn 4.96	$e_1 = n$	$e_1 = c$

Last Update: 6-Apr-2007

Page	Reference	Is	Is Clearer As
	Eqn 4.97	$e_2 = \frac{n!}{2!(n-2)!}$	$e_2 = \frac{c!}{2!(c-2)!}$
393	Eqn 4.98	$e_3 = \frac{n!}{3!(n-3)!}$	$e_3 = \frac{c!}{3!(c-3)!}$
	Eqn 4.99	$e_4 = \frac{n!}{4!(n-4)!}$	$e_4 = \frac{c!}{4!(c-4)!}$
397	Figure 4.17	[Full structural formula has uneven C—C bond lengths in propane]	[Full structural formula should have even C—C bond lengths in propane]
399	Line 31	the reaction takes place	the coking reaction takes place
403	Line 39	Lewallen et al. have	Lewallen et al have
	Line 29	in terms of bonds only	in terms of source bonds only
404	Line 35	Adding Equation 4.102 to 4.104 gives	Adding Equations 4.102 through 4.104 gives
406	Line 6	bond types, if they are present in significant number, by choosing	significant bond types by choosing
409	Line 11	and the centroid.	and the centroid of this region.
423	Line 14	formulating rate laws.) (This	formulating rate laws. This
425	Line 22	no nitrogen in the fuel, then there will be no CN or HCN and there	no nitrogen in the fuel, then there
432	Line 23	reference conditions from ppm	these reference conditions from ppm
438	Line 9	deviations in fuel and	field deviations in fuel and
460	Line 20	On the assumption that $T_{AFT} >> T_{refs}$, the	On the assumption that $T_{AFT} >> T_{ref}$, the
467	Line 19	NOx reduction, where the	NOx reduction if the
477	Table 5.2, Table 5.3	[Order of DF and SS columns is inconsistent with rest of text]	[Order columns as SS followed by DF]
496	Line 19	There seems to be	There seem to be
510	Line 7	If we presume negligible heat losses, we have	If we presume heat transfer to the flue gas and process only, we have
514	Table 5.9	[Superfluous entries]	[Remove " $a =$ " from first two temperature equations.]
520	Equation 5.156	[Formula contains instances of $\rho\infty$]	[All instances should be subscripted as ρ_{∞}]
524	Line 11	makes up for the neglect of radiation and the nucleation time.	makes up for the nucleation time and neglect of radiation.

Last Update: 6-Apr-2007

Page 4 of 4

Page	Reference	Is	Is Clearer As
583	Table D.2B	[extend list of atomic names]	104 Rutherfordium (261), 105 Dubnium (262), 106 Seaborgium (266), 107 Bohrium (264), 108 Hassium (269), 109 Meitnerium (268), 110 Darmstadtium (271), 111 Roentgentum (272), 112 Ununbium (285), 113 Ununtrium (284), 114 Ununquadium (289).
610	Line 26	after the binary point, we have	we have
629	Index	[add entry]	Rules for best models, 69