
 
 
 
 

253.1 Modeling of Combustion Systems 
 
16.3.3 FINDING INFLUENTIAL POINTS IN A REGRESSION 
Per 16.3.2, a point not belonging to the original regression may be outlying; 
notwithstanding, it cannot influence coefficients already regressed. But if a point in the 
original data regression is outlying, it +may indeed influence the coefficients, or it may 
not: perhaps it outlies in an uninfluential direction. Consider the data cluster bounded by 
the dashed circle in Figure 16.3-3, where the dashed line is the regression line for those 
data.  

 
FIGURE 16.3-3 Outlying and influential points. Point A (gray circle) is outlying but not 
influential as it sits nearly on the regression line (dashed) defined by the remaining data (unfilled 
circles). By contrast, Point B (gray diamond) is both outlying and influential as it markedly changes 
the slope of the regression line when included (dotted regression line shifts to the solid line). 

Point A is outlying, and its leverage would flag it as so. Nonetheless, if it were included in 
the regression, it would not have much influence because it very nearly sits on the (dashed) 
line already regressed. Thus, Point A is outlying but it is not influential. However, if Point 
B were included in the regression, the regression line would shift markedly toward it (solid 
line) because its leverage is in an influential direction.  In short, Point A is outlying but not 
influential; Point B is both outlying and influential. Several statistics flag influential points. 

 
16.3.4 Cook’s Distance, DFFITS, and DFBETAS 
As demonstrated, it is possible that a point is outlying but not in a way that significantly 
affects the estimated regressors. To see if this is so, one may remove the 𝑘th point from the 
data set to see how it affects the regression. Such  measures  make use  of  the  standardized 
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residual with the 𝑘th observation omitted, 𝑀𝑆𝑅("), where the parentheses indicate the 
deleted observation, per Equation 16.3-5. 

𝑀𝑆𝑅(") =
Σ'𝑦 − 𝑦*(")+
𝑛 −𝑚 − 1 = 𝑀𝑆𝑅(1 − ℎ"") (16.3-5) 

Here, 𝑦*(") is the predicted response when the 𝑘th observation is omitted from the regressed 
model. Fortunately, the second equality shows that there is no need to perform 
𝑛	regressions (one for each deletion), as each 𝑀𝑆𝑅(") derives from 𝑀𝑆𝑅 and the 𝑘th 
leverage value. Equation 16.3-6 gives the standard deviation for the regression with the 𝑘th 
residual deleted, 𝑠("), where 𝜖" = 𝑦" − 𝑦*", 𝑆𝑆𝑅 = Σ𝜖"$, and 𝐷𝐹𝑅(") = 𝐷𝐹𝑅 − 1 = 𝑛 −
𝑚 − 1. Because an additional degree of freedom is removed with the omission of the 𝑘th 
point, 𝑠(") tends toward a 𝑡(𝐷𝐹𝑅 − 1)	distribution, or if squared, an 𝐹(1, 𝐷𝐹𝑅 − 1) 
distribution. 

𝑠(") = 𝜖"9
𝐷𝐹𝑅(")

𝑆𝑆𝑅(1 − ℎ"") − 𝜖"$
	~	𝑡 𝑠(")$ 	~	𝐹 (16.3-6a, b) 

Three related measures of influence are in common use: Cook’s Distance (Δ(")𝑦<), 
DFFBETAS (Δ𝑗(𝑘)𝑎), and DFFITS (Δ(")𝑦#), per Equations 16.3-7, 8, and 9, respectively, 
where 𝑠' is the standard error of the 𝑗th effect per Equation 10.8-2. 

𝐶𝑜𝑜𝑘(𝑠	𝐷:					Δ(")𝑦< =
𝜖𝑘2

𝑚 ⋅ 𝑀𝑆𝑅
⋅

ℎ𝑘𝑘
(1 − ℎ𝑘𝑘)2

=
B𝐚 − 𝐚𝒋C𝐗T𝐗B𝐚 − 𝐚𝒋C

𝑚 ⋅ 𝑀𝑆𝑅
	~

1
𝑚
	𝐹 (16.3-7) 

𝐷𝐹𝐵𝐸𝑇𝐴𝑆:						Δ𝑗(𝑘)𝑎 =
𝑎( − 𝑎((")
𝑠),(

=
𝑥𝑘,𝑗T ;𝐗T𝐗<

−1

𝑠),(
=

𝜖"
1 − ℎ""

> (16.3-8) 

𝐷𝐹𝐹𝐼𝑇𝑆:										Δ(")𝑦# = 𝑠(")@
ℎ""

1 − ℎ""
		~		𝑡@

ℎ""
1 − ℎ""

 (16.3-9) 

DFBETAS is so named because coefficients were originally denominated by β' [7]; 
however, for consistency this text maintains 𝑎' to indicate the jth regressor. The second 
equality of Equation 16.3-7 shows that Cook’s distance [8] is the joint confidence region 
for the regression model [9], while DFFITS concerns the influence of the kth point, and 
DFBETAS concerns the influence of the kth deletion on the jth coefficient. Note that 𝚫𝐀 is 
an 𝑛 ×𝑚 matrix, while 𝚫𝐲< and 𝚫𝒚D are 𝑛 × 1 vectors. As general rules of thumb [7 – 10], 
Equation 16.3-10a flags potential outliers, and Equations 16.3-10b, c, and d flag potentially 
influential outliers.  

ℎ"" > 2
𝑚
𝑛  Δ(")𝑦< >

4
𝑛 NΔ'(")𝑎N >

2
√𝑛

 Δ(")𝑦# > 2E𝑚𝑛  (16.3-10a, b, c, d) 

Note that 𝚫𝐀/𝐚 may be expressed as either the Δ% or fractional difference of the 
coefficients with and without deletion, which may be more informative and intuitive than 
𝚫𝐀 alone; accordingly, 𝚫𝐀/𝐚 may be tested against NΔ'(")𝑎/𝑎'N > N2/𝑎'√𝑛N. For larger 
data sets (𝑛 ≳ 20), one may also make inference from the percentile distributions by using 
a second-order regression in log statistics against percentile and then inverting. 



 
 
 
 

253.3 Modeling of Combustion Systems 
 
Example 16.3-1 Identifying Influential Points 
 
Problem Statement: The data of Table 16.3-1 captures 11 flame length observations of a 
boiler as it ramps up in firing rate from 0 to 100% of full load. 1. Use Equations 16.3-1, 7, 8, 
9, and 10 to flag outlying and influential points for further consideration. 2. Which point(s) 
are outlying? 3. Which are influential? 
 

Table 16.3-1 Observations of Flame Length for a Boiler at Various  
Loads and Oxygen Levels in the Flue Gas 

Pt Load O2 Flame Pt Load O2 Flame Pt Load O2 Flame 
[%] [%] L [ft] [%] [%] L [ft] [%] [%] L [ft] 

1 8.6 11.0 1 5 43.5 4.9 15 9 86.3 4.0 13 
2 10.8 8.9 5 6 54.9 3.7 15 10 96.7 3.8 15 
3 21.6 5.9 5 7 64.9 3.2 15 11 100.0 4.0 16 
4 32.5 5.3 10 8 75.5 3.5 10     

 
 
Solution: See Figure 16.3-4 
 

 
Figure 16.3-4. Spreadsheet for Outliers. Cells B4:D14 comprise 𝐗, Cells E4:E14 comprise 𝐲. Cells 
F4:F14 comprise 𝐲#, derived in the usual way, with the error reported in Cells G4:G14. Cell J20 
contains the DFR and Cell K20 contains the MSR. These values lead to the statistics in Cells H4:M14 
per Equations 16.3-1, 7, 8, and 9. Using Equation 16.3-8 to solve for 𝑎((") leads to the values of Cells 
N4:P14, which are the 𝑎 coefficients with the kth observation deleted. Equation 16.3-10 leads to the 
critical values held in Cells H16:M16. For comparison with 𝑎((")+ , Cells N16:P16 show 𝐚+. As 
examples, for m=3, H4 = MMULT (MMULT (B4:D4,$B$20:$D$22), TRANSPOSE (B4:D4)), 
I4=G4^2/$K$20*(H4/(1-H4)^2)*1/m, J4=G4*SQRT((H4/(1-H4)*($J$20-1) / ($K$20*(1-H4)*$J$20-
G4^2))), K4:M4=MMULT (B4:D4,$B$20:$D$22) / TRANSPOSE(F$20:F$22) * G4/(1-H4), and 
N4:P4=TRANSPOSE ($E$20:$E$22) - (K4:M4) * TRANSPOSE($F$20:$F$22).  

A B C D E F G H I J K L M N O P
1 y ŷ
2 Load O2
3 [%], ξ1 [%], ξ2
4 1 1 8.6 11.0 1 1.3 -0.3 0.675 0.022 -0.240 0.134 -0.074 -0.196 14.8 0.048 -1.218
5 2 1 10.8 8.9 5 4.2 0.8 0.307 0.022 0.242 -0.021 -0.035 0.101 15.6 0.047 -1.383
6 3 1 21.6 5.9 5 8.6 -3.6 0.262 0.302 -1.079 -0.733 0.756 0.513 19.1 0.014 -1.610
7 4 1 32.5 5.3 10 9.9 0.1 0.204 0.000 0.017 0.014 -0.014 -0.011 15.4 0.046 -1.321
8 5 1 43.5 4.9 15 10.9 4.1 0.147 0.158 0.796 0.501 -0.415 -0.384 13.0 0.063 -1.114
9 6 1 54.9 3.7 15 13.1 1.9 0.196 0.055 0.396 0.323 -0.231 -0.296 13.9 0.055 -1.163
10 7 1 64.9 3.2 15 14.2 0.8 0.194 0.010 0.161 0.120 -0.070 -0.118 14.9 0.048 -1.261
11 8 1 75.5 3.5 10 14.3 -4.3 0.144 0.170 -0.848 -0.183 -0.068 0.207 16.4 0.048 -1.441
12 9 1 86.3 4.0 13 14.1 -1.1 0.201 0.018 -0.218 0.081 -0.148 -0.066 15.1 0.052 -1.290
13 10 1 96.7 3.8 15 14.8 0.2 0.301 0.001 0.050 -0.026 0.040 0.021 15.6 0.044 -1.338
14 11 1 100.0 4.0 16 14.7 1.3 0.370 0.074 0.453 -0.275 0.390 0.232 16.8 0.029 -1.455
15 XTy
16 11 595.3 58.2 120 0.5 0.4 1.0 0.6 0.6 0.6 15.5 0.045 -1.327
17 595.3 43331 2491 7873
18 58.2 2491 369.7 523 SS DF MS F p ȳ 10.909
19 a S.E. M 211.08 2 105.5 15.12 0.002 m 3
20 3.520 -0.027 -0.373 15.471 4.957 R 55.83 8 6.98 s = 2.642 n 11
21 -0.027 0.000 0.003 0.045 0.041 T 266.91 10 26.69 R2 = 0.791
22 -0.373 0.003 0.044 -1.327 0.553

XTX Critical Values a(k)

Analysis of Variance (ANOVA)

(XTX)-1

DFBETAS, [a – a(k)]/sk Coeff. with deletion

ξ0
Flame Δ(0)a Δ(1)a Δ(2)a a(0) a(1)

DFFITS 
Δŷ

L [ft]
a(2)

Pt
X Matrix ε = 

y - ŷ h kk
Cook's 

D, Δȳ
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1. Statistics that exceed the critical values of Cells H16:M16 are boxed and shaded.  
2. For Pt 1, Cell H4 exceeds the threshold of Cell H16 and is therefore outlying. However, 

Cells I4:M4 compared to respective Cells I16:M16 show that Pt 1 is not influential. 
3. Pt 3 is influential as indicated by the values of Cells I4:M4, all of which exceed the 

respective thresholds in Cells I16:M16. Also compare Cells N6:O6 with N16:O16, which 
show large coefficient differences between 𝑎,(-) = 19.1 and 𝑎.(-) = 0.014 versus 𝑎, =
15.5 and 𝑎. = 0.045, indicating strong influence of Point 3 on the flame length and load 
coefficient. 

 
Discovery of influential points should encourage the investigator to further examine the 
data, not merely exclude them without further analysis. Some possibilities for outlying or 
influential points are serial correlations, errors in transcription, wayward measurement 
equipment, etc. Although randomization can mute serial correlation, it is often infeasible 
to randomize the firing rate of a boiler even for investigatory purposes, since so many 
downstream processes depend on the boiler’s steam production and rate. In the present 
case, the boiler was fired from a cold start and gradually ramped up in firing rate from 
partial to full load. Yet only after a boiler is equilibrated (warm) do observations become 
reliable. Note the inverse relation of oxygen and firing rate for less than 33% load (typical).  

If randomization is infeasible, a better run order for flame length and combustion-related 
emissions in fired equipment may be from high- to low-fire. This will at least ameliorate 
the influences of a cold boiler on the observations. In the present case, Points 1–4 are 
suspect. Flame length at partial load may not be a concern. Regardless, these are the data.  

Importantly, outliers may in fact be valid data points representing unrealized but potentially 
profitable effects. In the present case, they have alerted the investigator to the perils of data 
collected near start-up. In all cases, the best policy is to flag influential outliers and 
investigate them carefully. Great discoveries may await. 
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