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ABSTRACT 

Orthogonal and rotatable experimental designs have many well known advantages for experimental 
investigation.  Such advantages include low computational cost, independently estimable effects, and a 
well known error structure and associated statistics.  Well known examples of orthogonal and rotatable 
designs include factorial designs, central composites, and Box-Behnken designs.  By way of contrast, 
mixture designs are generally non-orthogonal and non-rotatable.  It is possible to orthogonalize a portion 
of the mixture space; however, for gaseous fuel blends much or all of the mixture space is relevant.  
Subsequently, it may be possible to apply a non-linear transformation to larger portions of the mixture, 
but non-linear transformations distort the error structure and complicate statistical tests.  Therefore, a 
linear transformation that maps the entire mixture region to an orthogonal and rotatable design space 
(and vice-versa) is desired.  This paper presents details of such a transformation applicable to any 
number of factors.   
 
Introduction 
Combustion experiments with gaseous fuels often result in mixture-amount or mixture-process-variable 
(MPV) experiments where most or all of the mixture space is relevant.  We first overview essential 
aspects of mixture and factorial designs and then present a transformation matrix that maps one to the 
other.  We demonstrate the method with application to a four-component mixture.  We shall find that for 
any q-component mixture there are (q − 1)! linear transformations that may be applied piecewise to 
collectively map the entire mixture space to an orthogonal factor space.  All such piecewise maps may 
be generated via permutation matrices from a single matrix.  Even better, a single transformation matrix 
may be used to map the entire mixture or factor space in conjunction with a straightforward reordering 
of the components or factors.  As illustrations, we use the reordering method to map four-component 
mixture designs from various three-factor orthogonal and rotatable designs.  The mapped designs 
comprise a factorial design, a central composite design, and a Box-Behnken design.  We also show some 
results for a MPV design having two independent factors and three mixture components. 
 
Background 
Combustion equipment designed for refineries must operate on a wide variety of gaseous fuel 
compositions (termed refinery fuel gas or RFG).  RFG comprises whatever gaseous byproducts the 
refinery cannot process to more profitable ends; this RFG is then used to displace other fuels and fire 
combustion equipment used to refine crude or create petrochemicals.  Since different refineries process a 
wide variety of crudes for many end-use markets, there are as many RFG compositions as there are 
refineries; indeed, a single refinery often hosts several different RFGs.  RFG comprises mostly saturated 
hydrocarbons (typically those having one to four carbons), hydrogen, minor amounts of diluents, and 
trace amounts of other species.  A 20-component blend is not unusual.  
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The combustion reaction may be thought of as occurring in two broad steps.  In the first step – pyrolysis 
– heat from the combustion reaction dissociates fuel into hydrogen and hydrocarbon fragments.  In the 
second step – oxidation – these fuel fragments are then completely burned with air to form carbon 
dioxide and water vapor and trace unwanted emissions of NOx (10 to 100 ppm) and CO (~0 ppm, but 
higher under start-up conditions).  Because oxidation chemistry is similar for all hydrogen/hydrocarbon 
blends, it is possible to simulate a complex RFG using three or four components so long as one matches 
the number and kinds of bonds; i.e., H–H, C–H, and C–C bonds – the so-called equivalent bond method 
(Colannino 2006).  Such reduced-component mixtures do a good job of simultaneously matching salient 
fuel properties including heating value, stoichiometric oxygen requirement, specific gravity, pressure-
flow characteristics, and emissions potentials. 
   
At a minimum, combustion performance is a function of furnace operating temperature, ultimate oxygen 
concentration in the furnace – so called excess oxygen, and fuel composition.  This minimal set 
represents two independent factors (temperature and oxygen) and fuel mixtures of one to three mixture 
components (e.g., hydrogen, natural gas, and propane).  Indeed, designers of combustion equipment 
must guarantee such performance, so accurate models are a must.  
 
Combustion reactions are complex: they comprise many more than 100 elemental reactions leading to 
final products; and such reactions represent a highly non-linear system within a complex turbulent flow 
field having simultaneous momentum, heat, and mass transfer.  This complex pathway simply cannot be 
modeled with sufficient accuracy.  A practical approach for predicting emissions such as NOx is to fit a 
simplified model with adjustable parameters by performing MPV experiments and then fitting a semi-
empirical equation.  However, even the simplest applicable MPV experiment can be cumbersome.  For 
example, measuring binary blends and factor interactions for a ternary mixture embedded in a 22 
factorial (Figure 1) leads to an equation with potentially 28 adjustable parameters (Equation 1). 
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Figure 1, an MPV experimental design.  The design represents the simplest mixture-process-variable experiment 
comprising interactions between two independent factors (x1 and x2) and three mixture components (z1, z2, and z3). 
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where ln[NOx] represents the natural logarithm of the volume fraction of NOx in the flue gas measured 

in ppm, 
 aj, bk, and cj,k are adjustable parameters for the jth factor or factor-factor interaction, kth 

component or component-component interaction, and j x k factor-component interactions, 
respectively,  

 xj is the jth independent factor transformed to some dimensionless range such as ±1: −1 < xk < 1, 
(e.g., furnace operating temperature and excess oxygen) and 

 zk is the kth mixture fraction, 0 < zk < 1 and Σ zk = 1, (e.g., hydrogen, natural gas, and propane). 
 
For combustion correlations, Equation (1) is overkill; most of the coefficients will end up pooled as 
residual error and they are expensive to obtain.  It would be best to orthogonally fractionate the design 
and use fewer points if possible.  In non-mixture experiments, response surface and factorial 
experimental designs have been known for many years  (Box and Draper 1989) and have the following 
desirable properties: they are orthogonal, generating mutually independent and unbiased coefficients; 
they are rotatable, providing uniform variance and error structure; and they are sequential, capable of 
being run in orthogonal blocks or fractions.  However, preserving these properties in mixture or MPV 
designs has been challenging.   
 
MPV designs have been used for some time (Hare 1979) and over the years investigators have made 
various suggestions.  One early suggestion was to fractionate the process variables separately from the 
mixture components (Cornell and Gorman 1984).  More recently, orthogonal blocking schemes were 
given by Nigam (1970), Draper et al (1993), Murthy and Murty (1993), Prescott et al (1993), Lewis et al 
(1994), Prescott and Draper (1998) and Prescott (2000).  It has also been known for some time that 
orthogonal designs could be run within a portion of the (q – 1)-component mixture space.  In this way 
Thompson and Myers (1968) mapped a fully rotatable and orthogonal response surface design.  Other 
transformations map q − 1 mixture components to a symmetrical simplex centered at the origin 
(Claringbold 1955).  Even so, the resulting matrix is not orthogonal for the general second-order or 
greater polynomial, and the resulting coefficients are mutually biased.  Orthogonal and rotatable designs 
in q – 1 independent factors can be mapped to larger portions of the simplex using a variety of other 
transformations including the reciprocal, ratio, and logarithmic transformations (see for example Becker 
1969, 1970 and Darroch and Speed 1985).  However, such transforms are not used primarily to 
orthogonalize mixture space, nor can they do so over the entire simplex region.  In 2000, Cornell 
surveyed the field and gave several topics meriting further attention, one of which was the need for 
robust designs to fractionate mixture and MPV designs.  Cornell (2002) also compiled a good survey of 
mixture designs in a book length treatment; nearly all are characterized by non-orthogonal matrix arrays.   
 
From mixture designs to factorials 
Here, we present a piecewise linear transform that can be applied to the entire mixture space and 
transform mixture and MPV designs to orthogonal spaces.  To begin, consider a mixture comprising q 
components, q – 1 being independently determinable according to the following constraints. 

  10 ≤≤ kz  and 1
1

=∑
=

q

k
kz  (2) 

where q is the total number of mixture components 
  k is an index from 1 to q 
  zk is the fraction of the kth mixture component 
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By way of contrast, factorial designs have no such constraints, although they are usually coded to ±1 or 
other values of convenience via a linear transform of the original factors.   
  11 ≤≤− jx  (3) 
where xj is the jth factor of a factorial or related design. 
 
In the limit, we must account for any number (m) of mixture fractions and transform them to q – 1 
associated factors.  In practice, we can represent the entire domain of q mixture fractions with some 
subset of the infinite matrices Z, X, and T, as defined below. 
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The above matrices have the following regularities.   

• Z comprises  
o a first column comprising 1s,  
o 0s for all entries above the principal diagonal, and 
o an infinite principal diagonal of reciprocal counting numbers, the first entry being 

repeated (1, 1, 1/2, 1/3, 1/4, 1/5, … ) and 
o the diagonal entries are repeated to the left. 

• X comprises  
o an infinite principal diagonal and lower triangular region of 1s (in accordance with 

convention, we represent ±1 factor values by their sign) and  
o an upper triangular region of −1s.  
o X may also be derived from Z by mapping all zero elements to −1 and all non-zero 

elements to +1. 
• T comprises  

o an infinite principal diagonal starting with 1 and followed by the even numbers in natural 
order: 1, 2, 4, 6, 8, 10, …,  

o a first row of –1s to the right of the first element, 
o a first column of 0s below the first element, 
o 2s for all remaining elements below the principal diagonal.   

 
The General Transformations 
For actual (finite) mixture fractions, we shall transform some subset of the mixture map Z to a subset of 
X using a subset of the transformation matrix, T, (or vice-versa) according to the following relations 
(which hold for the infinite matrices or finite subsets thereof). 
 
  X = Z·T (5) 
  Z = X·T-1 (6) 
  T = Z-1X (7) 
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In general, the mixture space will be subdivided into (q – 1)! regions with all regions being identical 
except for reflections across axes (corresponding to permutation of the given matrices).   
 
Examples with Quaternary Mixtures 
For example, consider the quaternary mixture space comprising all possible mixture fractions of z1, z2, 
z3, and z4.  We shall select the first q – 1 = 3 of them, denoted Z0123.  Without any loss in generality, the 
fourth is tacit and may be recovered via Equation (2).  Z0123 is equivalent to the first q x q entries of Z in 
Equation (4). 
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From top row to bottom, Z0123 holds the respective coordinates for the vertices labeled h, e, b, and a, in 
Figure 2, and a leftmost column of 1s; this always results in an invertible square matrix.  
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Figure 2, correspondence of mixture and factorial space for a four-component mixture.  The four-component mixture 
may be mapped to the orthogonal three-factor (23) factorial design space using linear transformations.  Here lower case letters 
(spherical point markers) map to uppercase ones (cubic point markers) and vice-versa. 
 
The right-tetrahedral region coded by Z0123 (shaded Region efgh in Figure 2) comprises the four-
component mixture space with z4 tacit and coincident with the origin. We now desire to map points a – h 
in mixture space )1,,1( 321 ≤≤− zzz  to points A–H, respectively, in factor space )1,,1( 321 ≤≤− xxx using 
only linear transformations.  This can be done piecewise.  However, any transformation will require an 
asymmetric stretch because the two regions are not geometrically similar; as a result, the resolution will 
be poorer along the ah axis (corresponding to the z4 axis in the original mixture space).  Accordingly, we 
should select z1, z2, and z3 to be the components needing the highest resolution. 
 
We now turn our attention to a portion of the shaded region in Figure 2: the surface abe and Point h 
subtend a tetrahedral volume abeh.  Region abeh represents all mixtures for which z1 ≥ z2 ≥ z3.  We shall 
symbolize this with the mixture subscripts denoted 123 (or preferably 0123 to remind us that it is a four-
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component mixture corresponding to three independent factors).  A total of six such regions exist 
corresponding to (q − 1)!; that is, all possible permutations of q − 1 components.  Table 1 gives the 
correspondences. 
 

Table 1, Relation Between Permutation, Region, and Constraint 
Permutation Order Region Constraint 

0123 abeh z1 ≥ z2 ≥ z3 
0132 aceh z1 ≥ z3 ≥ z2 
0213 abgh z2 ≥ z1 ≥ z3 
0231 adgh z2 ≥ z3 ≥ z1 
0312 acfh z3 ≥ z1 ≥ z2 
0321 adfh z3 ≥ z2 ≥ z1 

 
Note that all regions share the common axis ah and are reflections of one another; therefore each region 
contains a and h (coded as the first and last points in each matrix – see Table 2); Table 2 gives the 
explicit coordinates for the mixture and factorial spaces referenced in Table 1.   
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Z0213 ↔ X0123 Z0231 ↔ X0231 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

++++
−+++
−+−+
−−−+

↔

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

3131311
021211
0101
0001

 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

++++
++−+
−−++
−−−+

↔

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

3131311
212101

0101
0001

 

Z0312 ↔ X0312 Z0321↔ X0321 
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Table 3 mathematically expresses the six transforms and the regions they superintend. 
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Table 3, Linear Piecewise Transformations for the Four-component Mixture Space 
Linear Piecewise Transformations Region Constraint 

X0123 = Z0123T0123;   1
012301230123
−= TXZ  abeh z1 ≥ z2 ≥ z3 

X0132 = Z0132T0132;  1
013201320132
−= TXZ  aceh z1 ≥ z3 ≥ z2 

X0213 = Z0213T0213;   1
021302130213
−= TXZ  abgh z2 ≥ z1 ≥ z3 

X0231 = Z0231T0231;   1
023102310231
−= TXZ  adgh z2 ≥ z3 ≥ z1 

X0312 = Z0312T0312;   1
031203120312
−= TXZ  acfh z3 ≥ z1 ≥ z2 

X0321 = Z0321T0321;   1
032103210321
−= TXZ  adfh z3 ≥ z2 ≥ z1 

 
The Use of Permutation Matrices 
The particular reflections may be derived from Z using a permutation matrix P; e.g., 
 
 Z0123P0312 = Z0312 (9) 
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The desired permutation matrix is derived straightforwardly from the permutation order (referenced in 
the subscript order) according to the following rules. 

• The first row and column comprise a 1 followed by 0s. 
• The first row and column are indexed from zero and incremented by unity.  That makes the 

second diagonal element the start of Row 1 and Column 1.   
• The remaining elements are filled from Row 1 to Row q − 1 by placing a 1 in the column 

corresponding to the subscripted element and 0s elsewhere.  
• The permuted Z0abc… matrix may also be built directly from the subscript order, row by row, in a 

top-down cumulative fashion with  
o 1 placed in column a,  
o 1/2 placed in each of columns a and b,  
o 1/3 placed in each of columns a, b, c, etc. 

 
In general, the permutation matrices have the following properties.   

• Inverse equal to the transpose  
o P -1 = PT 

• Permutation of Z and X by post-multiplication 
o Z0123…P0abc…= Z0abc…  
o X0123…P0abc…= X0abc… 

• Permutation of T by pre- and post-multiplication 
o PT

0abc…T0123…P0abc…= T0abc… 
• Correct transformation preserved by post-multiplication with the appropriate T matrix 

o Z0abc…T0abc…= X0abc… 



 8

Mapping of a 23 Factorial Design to 4-Component Mixture Space 
For illustrative purposes, we continue with our four-component example; any point satisfying the 
constraint z1 ≥ z2 ≥ z3 will be transformed from mixture space to factorial space via X0123 = Z0123T0123.  
Using this method, experimental designs in factor space may be mapped to mixture fractions and vice-
versa.  For example, Figure 3 shows how the 23 factorial design maps to its corresponding mixture 
design (incomplete simplex-centroid).  The figure also shows the matrix for the mixture fraction using 
traditional coordinates [i.e., letting ( )3214 1 zzzz ++−=  and omitting the 1s column]. 
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Figure 3, correspondence between full factorial design and mixture design.  For convenience, the mixture design is also 
expressed in traditional mixture coordinates at right. 

 
As an example of the method, consider Point 3 in Figure 3 where x2 > x1 = x3.  This point is borders two 
regions of factor space: 312 xxx ≥≥  and 132 xxx ≥≥ .  Therefore, we may use either 1

021302130213
−= TXZ  or 

1
023102310231
−= TXZ  to map ( )−+−+=T

3x  → ( )01013 =Tz .  Arbitrarily selecting the first, we 
have the following. 
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Using a Single Linear Transform with Reordering 
Rather than employ permutation matrices and transform all possible piecewise linear regions, a simpler 
and computationally less expensive method for mapping m components is as follows. 

• Truncate the X or Z matrix given in Equation (4) to an q x q matrix. 
• Reorder the source components or factors from greatest to lowest value. 
• Perform the transformation X = ZT or Z = XT-1. 
• Reorder the transformed coordinates to correspond with the original source order. 

 
This method requires only one set of truncated transformation matrices.  Mixture coordinates are then 
orthogonalized using a single generalized linear transform preceded and followed by reordering the 
inputs and results, as necessary.  The procedure is applicable to any number of mixture components or 
factor dimensions.  Using it, typical experimental designs (e.g., full or fractional factorials, inscribed 
central-composites, Box-Behnken designs, etc.) can be expressed in mixture components and vice versa: 
Table 4 shows the results of mapping a three-factor central composite design to traditional mixture 
fractions.  Table 5 does the same for a three-factor Box-Behnken design.  As an example of this latter   
method, consider Point + − + in Table 4, that is ( )595.0595.0595.013 −=Tx .  In order to use the  
 
 

Table 4, Mixture Coordinate Equivalents for  
a Three-Factor Inscribed Central Composite Design 

 Factorial Coordinates Mixture Design Coordinates 
Pt x1 x2 x3 z1 z2 z3 z4 

− − − −0.595 −0.595 −0.595 0.068 0.068 0.068 0.797 
− − + −0.595 −0.595 0.595 0.068 0.068 0.365 0.500 
− + − −0.595 0.595 −0.595 0.068 0.365 0.068 0.500 
− + + −0.595 0.595 0.595 0.068 0.365 0.365 0.203 
+ − − 0.595 −0.595 −0.595 0.662 0.068 0.068 0.203 
+ − + 0.595 −0.595 0.595 0.365 0.068 0.365 0.203 
+ + − 0.595 0.595 −0.595 0.365 0.365 0.068 0.203 
+ + + 0.595 0.595 0.595 0.266 0.266 0.266 0.203 
0 0 0 0 0 0 1/6 1/6 1/6 1/2 
0 0 0 0 0 0 1/6 1/6 1/6 1/2 
= 0 0 − 0 0 0 1/4 1/4 1/2 
‡ 0 0 + 0 0 2/3 1/6 1/6 0 
0 = 0 0 − 0 1/4 0 1/4 1/2 
0 ‡  0 0 + 0 1/6 2/3 1/6 0 
0 0 = 0 0 − 1/4 1/4 0 1/2 
0 0 ‡ 0 0 + 1/6 1/6 2/3 0 
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Table 5, Mixture Coordinate Equivalents for  
a Three-Factor Box Behnken Design  

 Factorial Coordinates Mixture Design Coordinates 
Pt x1 x2 x3 z1 z2 z3 z4 

− − 0 − − 0 0 0 1/2 1/2 
− 0 − − 0 − 0 1/2 0 1/2 
0 − − 0 − − 1/2 0 0 1/2 
0 + + 0 + + 1/6 5/12 5/12 0 
+ 0 + + 0 + 5/12 1/6 5/12 0 
+ + 0 + + 0 5/12 5/12 1/6 0 
0 0 0 0 0 0 1/6 1/6 1/6 1/2 
0 0 0 0 0 0 1/6 1/6 1/6 1/2 
0 0 0 0 0 0 1/6 1/6 1/6 1/2 
− 0 + − 0 + 0 1/4 3/4 0 
− + 0 − + 0 0 3/4 1/4 0 
0 − + 0 − + 1/4 0 0 0 
0 + − 0 + − 1/4 3/4 0 0 
+ − 0 + − 0 3/4 0 1/4 0 
+ 0 − + 0 − 3/4 1/4 0 0 

 
T0123 transform – i.e., 1

012333
−= TTT xz  – we must reorder T

3x  as ( )595.0595.0595.01*
3 −=Tx  where 

the asterisk (*) denotes the reordered vector.  Then we apply 1
023133 ** −= TTT xz  giving 1

023133 ** −= TTT xz  and 
the following result.  

( ) ( )068.0365.0365.01

611211210
041410
00210
6161611

595.00595595.01** 1
021333 =

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−−
−

−== −TTT xz  

The row vector is then reordered to coincide with the original factor order of the original source vector: 
( ) ( )365.0068.0365.01595.0595.0595.01 33 =→−= TT zx . 

 
Mixture-Process Variable (MPV) Experiments 
It is possible to fractionate any MPV experimental design.  For example, Figure 4 shows the component 
and factor disposition that transform to a 22 x 32 factorial design (like markers denoting orthogonal 
fractions).  The design may also be fractionated via standard techniques. 
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Figure 4, illustration of a mixture-process-variable design that maps to a 22 x 32 factorial design.  Point markers are 
segregated in three orthogonal groups.  The design contains a non-uniform point distribution in the equilateral or right-
angular coordinates.  The mixture design is centered at z1 = z2 = 1/4, z3 = 1/2 rather than z1 = z2 = z3 = 1/3.  However, the 
design is symmetrical and orthogonal in the transformed coordinates.   
 
Any of a variety of orthogonal and/or rotatable designs could be used as well.  Notwithstanding, it 
should be noted that the MPV design is not uniform: it provides higher resolution for z1 x z2 blends than 
for z1 x z3 or z2 x z3 blends.  Because the ternary component space cannot be mapped to a square factor 
space in a radially symmetric way, the simplex does not (and cannot) map to factor space without some 
kind of radial asymmetry.  Of note, the design center maps from (1/4, 1/4, 1/2) rather than the original 
ternary design center (1/3, 1/3, 1/3).  This lack of “center-preservedness” is a general feature for this 
class of transforms.  This radial asymmetry is perhaps most easily apprehended by reference to Figure 5 
where otherwise identical figures are transformed to and from right-angle, equilateral, and rectangular 
systems. 
 

 
Figure 5, mapping from right angle to equilateral to rectangular coordinates and vice versa.  Note that the associated 
stretches are radially asymmetric.  For example, the dotted circle in right-angled coordinates (left) becomes an ellipse in 
equilateral coordinates (center) and an inverted cardioid in rectangular coordinates (right).  Likewise, the solid circle in 
rectangular coordinates transforms to respective cardioids in equilateral and right-angular coordinates. 
  
Being that this is the case, one should match the asymmetry of the design to associated asymmetries in 
the response, to the extent possible.  This was done in the case of the particular ternary fuel blend used 
as an example.  That is, H2 and C3H8 (z1 and z2 respectively) are the primary causative agents for NOx 
emissions: NOx from RFG is formed via two mechanisms – the so-called thermal and prompt NOx 
mechanisms.  Thermal NOx formation is responsible for ~80% of the total NOx; the mechanism 
becomes more facile with increasing flame temperature and such is disproportionately elevated by 
hydrogen.  Prompt NOx accounts for ~20% of the total NOx formed and is facilitated by hydrocarbon 
fragments in the fuel (primarily via dissociation of C3H8).  Natural gas, the third component, is mostly 
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CH4 – a refractory molecule that contributes much less significantly to thermal or prompt NOx than H2 
and C3H8.  Therefore, H2 and C3H8 were assigned to the vertical and horizontal directions in the right-
angular coordinates. 
 
Center-Preserving Transformations 
It is possible to map right-angled coordinates to other systems that are center-preserving; this is obtained 
at the expense of requiring more transforms [q! rather than (q − 1)! transforms which comprise q – 1 
families of reflected shapes].  Figure 6 illustrates several center-preserving transformations (e.g., 
1/3, 1/3, 1/3 → 0, 0) and associated regions, each of which may be transformed to or from one another.  
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Figure 6, center-preserving transforms.  The numbers refer to the q! piecewise continuous regions over which a transform 
is applicable.  For example, the 132 region indicates the mixture region where z1 ≥ z3 ≥ z2. 
 
The disadvantage of center-preserving transformations is that there are more of them.  For example, the 
piecewise linear transformation from right-triangular to rectangular coordinates generates six different 
regions – two reflections each of three distinctly shaped regions as opposed to reordering of a single 
piecewise transform.  Table 6 gives the transforms to and from right-angled coordinates to equilateral, 
rectangular, and hexagonal coordinates for a ternary mixture system.  Center-preserving transforms do 
not facilitate mapping factorial and like designs to and from mixture space as conveniently as a single 
transform (indeed, any region can be transformed to any other – one could transform the equilateral 
region to a circular one, though the transforms would not be linear); so, we do not treat the topic any 
further. 
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Table 6, Transforms to and from Right Angle Coordinates to Other Coordinate Systems 
From Right Angle Coordinates to Region 

Equilateral Rectangular Hexagonal 
1 0 1 1 0 1 1 1 –1
1 √3/2 −1/2 1 √3 0 1 1 3123 

z1 ≥ z2 ≥ z3 1 −√3/2 −1/2 1 –√3 –1 1 –2 –2
1 0 1 1 1 –1
1 √3 –1 1 0 2132 

z1 ≥ z3 ≥ z2 1 –√3 0 1 –1 –1
1 √3/2 3/2 1 3 1
1 √3/2 –1/2 1 –1 1213 

z2 ≥ z1 ≥ z3 1 –√3 –1 1 –2 –2
1 0 2 1 2 0
1 √3/2 –1/2 1 –1 1231 

z2 ≥ z3 ≥ z1 1 –√3/2 –3/2 1 –1 –1
1 –√3/2 3/2 1 1 –1
1 √3 –1 1 0 2312 

z3 ≥ z1 ≥ z2 1 –√3/2 –1/2 1 –1 –1
1 0 2 1 2 0
1 √3/2 –3/2 1 –1 1321 

z3 ≥ z2 ≥ z1 

same as above for all 
regions 

1 –√3/2 –1/2 1 –1 –1
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Table 6, continued 
To Right Angle Coordinates from Region 

Equilateral Rectangular Hexagonal 
1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3

0 √3/3 −√3/3 −√3/9 2√3/9 −√3/9 5/12 −1/12 −1/3123 
z1 ≥ z2 ≥ z3 2/3 −1/3 −1/3 2/3 −1/3 −1/3 −1/4 1/4 0

1/3 1/3 1/3 1/3 1/3 1/3
√3/9 √3/9 −2√3/9 1/2 0 −1/2132 

z1 ≥ z3 ≥ z2 2/3 −1/3 −1/3 −1/6 1/3 −1/6
1/3 1/3 1/3 1/3 1/3 1/3

√3/18 5√3/18 2√3/9 1/4 −1/4 0213 
z2 ≥ z1 ≥ z3 1/2 −1/2 0 −1/12 5/12 −1/3

1/3 1/3 1/3 1/3 1/3 1/3
−√3/9 7√3/18 −5√3/18 1/3 −1/6 −1/6231 

z2 ≥ z3 ≥ z1 2/3 −1/3 −1/3 0 1/2 −1/2
1/3 1/3 1/3 1/3 1/3 1/3

√3/18 2√3/9 −5√3/18 1/2 0 −1/2312 
z3 ≥ z1 ≥ z2 1/2 0 −1/2 −1/6 1/3 −1/6

1/3 1/3 1/3 1/3 1/3 1/3
√3/9 5√3/18 −7√3/18 1/3 −1/6 −1/6321 

z3 ≥ z2 ≥ z1 

same as above for all 
regions 

2/3 −1/3 −1/3 0 1/2 −1/2
 
Conclusions 
A method has been given for mapping orthogonal and rotatable factor designs to mixture designs or 
vice-versa.  In its simplest form, the method uses a single linear transformation (with a reordering of the 
source and target coordinates as necessary so that the transform remains appropriate).  The method is 
applicable to any number of factors and provides a series of linear transforms between mixture and 
factorial designs, thus mapping orthogonal factorial designs to mixture spaces and vice-versa.  The 
transform allows mixture, mixture-amount, and mixture-process-variable designs to be made orthogonal 
and rotatable in the transformed space.  The mapping is necessarily asymmetrical but results in 
orthogonal and rotatable designs in the target space. 
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